If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 4.9x2 + 1.85x + 55.3 = 0 Reorder the terms: 55.3 + 1.85x + 4.9x2 = 0 Solving 55.3 + 1.85x + 4.9x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 4.9 the coefficient of the squared term: Divide each side by '4.9'. 11.28571429 + 0.3775510204x + x2 = 0 Move the constant term to the right: Add '-11.28571429' to each side of the equation. 11.28571429 + 0.3775510204x + -11.28571429 + x2 = 0 + -11.28571429 Reorder the terms: 11.28571429 + -11.28571429 + 0.3775510204x + x2 = 0 + -11.28571429 Combine like terms: 11.28571429 + -11.28571429 = 0.00000000 0.00000000 + 0.3775510204x + x2 = 0 + -11.28571429 0.3775510204x + x2 = 0 + -11.28571429 Combine like terms: 0 + -11.28571429 = -11.28571429 0.3775510204x + x2 = -11.28571429 The x term is 0.3775510204x. Take half its coefficient (0.1887755102). Square it (0.03563619325) and add it to both sides. Add '0.03563619325' to each side of the equation. 0.3775510204x + 0.03563619325 + x2 = -11.28571429 + 0.03563619325 Reorder the terms: 0.03563619325 + 0.3775510204x + x2 = -11.28571429 + 0.03563619325 Combine like terms: -11.28571429 + 0.03563619325 = -11.25007809675 0.03563619325 + 0.3775510204x + x2 = -11.25007809675 Factor a perfect square on the left side: (x + 0.1887755102)(x + 0.1887755102) = -11.25007809675 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 10x^2+14x=-x^2+3x+5 | | 30+.5x=21+.65x | | x-7=3(x+5) | | 4x+3=-4+2x+11 | | 2x-8-2x=-1+x | | 2(4y+3)=6 | | 9x-95=38+2x | | 2x+67=6x+7 | | .40x+.60y=24 | | 3yd=12y | | 7(2x-2)=-126 | | 5x+10+7x+50=180 | | -31+2x=-5(4x-7) | | 2x-5y=14fory | | 5x+10+7x+50= | | 9x-4=2r+3 | | 7x(5x+10)=x | | 8-7x-2=-15+4x-12 | | 7x+3=10x-45 | | -5t+7=11t+-25 | | 3x-5=-5-2x | | -8x+5=23 | | (16+2x)X(12+2x)=320 | | 7x(5x+10)=7x | | 4(4-4k)=-10-16 | | 16x-8=36 | | 1x+-4+2x=14 | | 10v-3-v=0 | | -2t^2+8t+1=0 | | -5t+7=11+-25 | | 4x+x+5=54 | | 8x^2y+8y=2x |